The Fragile Breakage versus Random Breakage Models of Chromosome Evolution

نویسندگان

  • Qian Peng
  • Pavel A. Pevzner
  • Glenn Tesler
چکیده

For many years, studies of chromosome evolution were dominated by the random breakage theory, which implies that there are no rearrangement hot spots in the human genome. In 2003, Pevzner and Tesler argued against the random breakage model and proposed an alternative "fragile breakage" model of chromosome evolution. In 2004, Sankoff and Trinh argued against the fragile breakage model and raised doubts that Pevzner and Tesler provided any evidence of rearrangement hot spots. We investigate whether Sankoff and Trinh indeed revealed a flaw in the arguments of Pevzner and Tesler. We show that Sankoff and Trinh's synteny block identification algorithm makes erroneous identifications even in small toy examples and that their parameters do not reflect the realities of the comparative genomic architecture of human and mouse. We further argue that if Sankoff and Trinh had fixed these problems, their arguments in support of the random breakage model would disappear. Finally, we study the link between rearrangements and regulatory regions and argue that long regulatory regions and inhomogeneity of gene distribution in mammalian genomes may be responsible for the breakpoint reuse phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topoisomerase II– and Condensin-Dependent Breakage of MEC1ATR-Sensitive Fragile Sites Occurs Independently of Spindle Tension, Anaphase, or Cytokinesis

Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mam...

متن کامل

Chromosomal breakage in normal and fragile X subjects using low folate culture conditions.

To investigate whether the fragile X syndrome is associated with a generalised chromosomal instability, we compared the frequency and distribution of chromosomal breakage in lymphocytes grown in low folate medium from normal subjects and from patients with the syndrome. Although low folate conditions increased the rate of chromosome breakage, no difference in frequency or distribution of chromo...

متن کامل

Breaking Good: Accounting for Fragility of Genomic Regions in Rearrangement Distance Estimation

Models of evolution by genome rearrangements are prone to two types of flaws: One is to ignore the diversity of susceptibility to breakage across genomic regions, and the other is to suppose that susceptibility values are given. Without necessarily supposing their precise localization, we call "solid" the regions that are improbably broken by rearrangements and "fragile" the regions outside sol...

متن کامل

Role of DNA secondary structures in fragile site breakage along human chromosome 10.

The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified ...

متن کامل

Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution.

The human and mouse genomic sequences provide evidence for a larger number of rearrangements than previously thought and reveal extensive reuse of breakpoints from the same short fragile regions. Breakpoint clustering in regions implicated in cancer and infertility have been reported in previous studies; we report here on breakpoint clustering in chromosome evolution. This clustering reveals li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006